[Deep Learning] Convolutional Neural Network (1)

2023. 4. 30. 13:18
๐Ÿง‘๐Ÿป‍๐Ÿ’ป์šฉ์–ด ์ •๋ฆฌ

Neural Networks
Feed-forward
Backpropagation
Convolutional Neural Network
stride
filter
kernel
topology
MLP
image
multi-channel
sparse connection
parameter sharing

 

 

์˜ค๋Š˜๋ถ€ํ„ฐ CNN์— ๋Œ€ํ•ด์„œ ๋ฐฐ์›Œ๋ด…์‹œ๋‹ค.

 

์ง€๊ธˆ๊นŒ์ง€๋Š”, 

 

linear separability, MLP, Feed-forward, Backpropagation, regularization, optimization ๋“ฑ์„ ์‚ดํŽด๋ณด์•˜์Šต๋‹ˆ๋‹ค.

 

๊ทธ๋ฆฌ๊ณ  ์˜ค๋Š˜์€ ์ƒˆ๋กœ์šด model CNN์— ๋Œ€ํ•ด์„œ ์‚ดํŽด๋ด…๋‹ˆ๋‹ค.

๊ทธ๋ฆฌ๊ณ , ์œ„์™€ ๊ฐ™์ด ์ง€๊ธˆ๊นŒ์ง€ ๋ฐฐ์šด ๋ถ€๋ถ„๋“ค์ด MLP์™€ CNN์ด ๋‹ค๋ฅด์ง€ ์•Š์Šต๋‹ˆ๋‹ค.

 

๊ฑฐ์˜ 90%๋Š” ๊ทธ๋Œ€๋กœ ์ ์šฉ๋œ๋‹ค๊ณ  ๋ด๋„ ๋ฌด๋ฐฉํ•ฉ๋‹ˆ๋‹ค. (CNN์˜ ํŠน์ด์„ฑ ๋•Œ๋ฌธ์— ๋‹ค์†Œ ๋‹ฌ๋ผ์งˆ ์ˆ˜๋Š” ์žˆ์Šต๋‹ˆ๋‹ค.)

 

 

Convolutional Neural Network

 

 

 

์šฐ๋ฆฌ์˜ CNN์€ Deep Learning์„ ์„ฑ๊ณต์œผ๋กœ ์ด๋ˆ architecture์ž…๋‹ˆ๋‹ค.

 

 

๋”ฅ๋Ÿฌ๋‹ 3๋Œ€์žฅ ์ค‘ 2๋ฒˆ์งธ ํ˜•์„ ๋งก๋Š” LeCun ๊ต์ˆ˜๋‹˜๊ป˜์„œ ์œ„์™€ ๊ฐ™์ด 89๋…„์— ์ œ์•ˆํ•˜์…จ์Šต๋‹ˆ๋‹ค.

 

๊ทธ๋ฆฌ๊ณ , ์ด CNN์€ NN์˜ specialized๋œ ํ˜•ํƒœ์ž…๋‹ˆ๋‹ค.

 

๊ทธ๋ฆฌ๊ณ  grid์™€ ๊ฐ™์€ ํ˜•ํƒœ์ž…๋‹ˆ๋‹ค.

 

image, video, ๋“ฑ

 

์ด๊ฒƒ๋“ค์€ ๋ชจ๋‘ pixel ๋‹จ์œ„์˜ ๋ฐ์ดํ„ฐ์ž…๋‹ˆ๋‹ค.

 

 ๊ทธ๋ž˜์„œ Image๋Š” 2D grid ํ˜•ํƒœ๋ฅผ data๊ฐ€ ์ด๋ฃจ๊ณ  ์žˆ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

 

๊ทธ๋ฆฌ๊ณ  grid-like topology๋Š” image ์ƒ์—์„œ ์ขŒ์ธก์ƒ๋‹จ grid ๋“ค๊ณผ ์šฐ์ธกํ•˜๋‹จ grid๋“ค๊ณผ ๋น„๊ตํ•˜์—ฌ ์ƒ๋Œ€์ ์œผ๋กœ ์—ฐ๊ด€์„ฑ์ด ๋–จ์–ด์ง€๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.

 

๊ทธ๋ฆฌ๊ณ  time-series๋Š” 2D grid๋Š” ์•„๋‹ˆ์ง€๋งŒ, 1D๋กœ ์งค๋ผ๋†“๊ณ  ๋ณด๋ฉด 1D grid ์ƒ์˜ grid ํ˜•ํƒœ๋กœ ํ•ด์„์ด ๊ฐ€๋Šฅํ•ด์ง‘๋‹ˆ๋‹ค.

 

๊ฐ๊ฐ 2D๋‚˜ 1D๋‚˜ ๋ชจ๋‘ ๊ฐ๊ฐ์˜ topology๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

 

์ผ๋‹จ CNN์€ image ์œ„์ฃผ๋กœ ๋ณด๋‹ˆ 2D data ์œ„์ฃผ๋กœ ์„ค๋ช…ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

 

์œ„์™€ ๊ฐ™์€ CNN์˜ ์—ญ์‚ฌ๋ฅผ ์‚ดํŽด๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

 

์ด์ œ, Convolutional Operation์ด ๊ธฐ์กด์˜ Weighted Summation๊ณผ ์–ด๋–ป๊ฒŒ ๋‹ค๋ฅธ์ง€์— ์ง‘์ค‘ํ•ด๋ด…์‹œ๋‹ค.

 

 

์ถœ์ฒ˜ : https://wikidocs.net/165034

 

์ผ๋‹จ CNN๊ณผ MLP์˜ ๋‹ค๋ฅธ ์ ์€ ๋ฌด์—‡์ผ๊นŒ์š”?

 

 

MLP ๋Š” weighted summation๋ถ€ํ„ฐ, activation์„ ํ†ตํ•ด ๊ฐ’๋“ค์„ forwardํ•˜์—ฌ ์—ฐ์‚ฐํ•ฉ๋‹ˆ๋‹ค.

 

์ฆ‰, MLP๋Š” ์ด matrix multiplication์ด๋ผ ๋ถˆ๋ฆฌ๋Š” ์ด matmul ์—ฐ์‚ฐ์ด ๊ธฐ๋ณธ ์—ฐ์‚ฐ์ด ๋˜๊ฒ ์Šต๋‹ˆ๋‹ค.

 

๊ทธ๋Ÿฐ๋ฐ CNN์—์„œ๋Š” MLP์™€ ๋‹ค๋ฅด๊ฒŒ Convolutional operation์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.

 

์ด๊ฒƒ์€ ์ƒˆ๋กœ์šด ์—ฐ์‚ฐ์ด์ฃ .

 

  • ์ด๊ฒƒ์€ linear operations์˜ ํŠน๋ณ„ํ•œ ํ˜•ํƒœ์ž…๋‹ˆ๋‹ค.
  • ๊ทธ๋ž˜์„œ Neural network ์ค‘์—์„œ๋„ ์ ์–ด๋„ ํ•˜๋‚˜์˜ convolutional layer๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๋ฉด ์šฐ๋ฆฌ๋Š” ์ด๊ฒƒ์„ CNN์ด๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค.
  • ์ด convolutional layer๋Š” ๋‹น์—ฐํžˆ ์ด convolutional operations์„ ์“ฐ๋Š” layer๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.

 

์ด๊ฒƒ์„ ์‚ฌ์šฉํ•˜๋Š” motivation์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.

  • Sparse connections
  • Parameter sharing
  • Spatial data

 

์šฐ์„ , spatial data๋ถ€ํ„ฐ ์‚ดํŽด๋ด…์‹œ๋‹ค.

 

์ด๊ฒƒ์€ ๊ณต๊ฐ„์  ๋ฐ์ดํ„ฐ๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.

 

๊ณต๊ฐ„์  ๋ฐ์ดํ„ฐ๋ž€ image, 2D grid๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.

 

์ด๊ฒƒ๋“ค์€ grid ๋งˆ๋‹ค, pixel์˜ ์ •๋ณด๋ฅผ ๋‹ด๊ณ , ๊ฐ€๊นŒ์ด ์žˆ๋Š” ๊ฒƒ๋“ค์ด ์—ฐ๊ด€์„ฑ์ด ๋†’์Šต๋‹ˆ๋‹ค.

 

์ฆ‰, image์—์„œ ์ฃผ๋ณ€์— ์žˆ๋Š” ๊ฐ’๋“ค์€ ์„œ๋กœ ๊ฐ™๊ฑฐ๋‚˜ ๋น„์Šทํ•œ ์ •๋ณด๋“ค์„ ํฌํ•จํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

 

๊ทธ ๋ง์€, ์šฐ๋ฆฌ๊ฐ€ ์ •๋ณด๋ฅผ ๋ชจ๋‘ ์“ธ ํ•„์š” ์—†์ด ์ •๋ณด๋Ÿ‰์„ summaryํ•˜์—ฌ ์ •๋ณด๋Ÿ‰์„ ์ค„์—ฌ๋‚˜๊ฐ€๋„ image๊ฐ€ ์‚ฌ๋žŒ์—๊ฒŒ ์ฃผ๊ณ ์‹ถ์–ดํ•˜๋Š” object๋“ค์— ๋Œ€ํ•œ ์ •๋ณด๋Š” ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

 

 

 

 

 

 

 

 

์œ„์™€ ๊ฐ™์€ CNN์˜ ์—ญ์‚ฌ๋ฅผ ์‚ดํŽด๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

 

์ด์ œ, Convolutional Operation์ด ๊ธฐ์กด์˜ Weighted Summation๊ณผ ์–ด๋–ป๊ฒŒ ๋‹ค๋ฅธ์ง€์— ์ง‘์ค‘ํ•ด๋ด…์‹œ๋‹ค.

 

Convolutional Operation

 

์šฐ๋ฆฌ๊ฐ€ ๊ธฐ์กด์— ํ•ด์™”๋˜ matrix multiplication๊ณผ ์กฐ๊ธˆ ๋‹ค๋ฆ…๋‹ˆ๋‹ค.

 

4 x 4 matrix๋Š” ๊ทธ๋ƒฅ ํ•œ ์žฅ์˜ image์—์„œ pixel ๊ฐ’์„ ์ผ๋ถ€๋ถ„ ์ถ”์ถœํ•œ ๊ฑฐ๋ผ๊ณ  ๋ณด์‹œ๋ฉด ๋˜๊ฒ ์Šต๋‹ˆ๋‹ค.

 

 

๊ทธ๋ฆฌ๊ณ , ์œ„ filter๋Š” kernel์ด๋ผ๊ณ ๋„ ๋ถ€๋ฆ…๋‹ˆ๋‹ค.

 

์œ„์™€ ๊ฐ™์€ ๊ฐ’์„ ๊ฐ€์งˆ ๋•Œ, ์šฐ๋ฆฌ๊ฐ€ convolutional operation์„ ํ†ตํ•ด์„œ output์„ ๊ณ„์‚ฐํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

 

 

 

์ด filter๋ฅผ input data์— ์ ์šฉ์‹œํ‚ต๋‹ˆ๋‹ค.

 

์ฆ‰, element-wise product๋ฅผ ํ•˜์ฃ .

 

 

๊ธฐ์กด matmul๊ณผ ๋‹ค๋ฅด๊ฒŒ, element ๋‹จ์œ„๋กœ ๊ณฑํ•˜์—ฌ ์ž๊ธฐ row, col์— ๋งž๊ฒŒ ์—ฐ์‚ฐํ•˜์—ฌ ๋„ฃ์–ด์ค๋‹ˆ๋‹ค.

 

๊ทธ๋ž˜์„œ ์œ„ element-wise production๋ฅผ ๋นจ๊ฐ„ ๋ฐ•์Šค์— ๋Œ€ํ•ด ๊ณ„์‚ฐํ•˜๋ฉด output์—์„œ์˜ ๊ฐ’์ฒ˜๋Ÿผ 2๊ฐ€ ๋‚˜์˜ค๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.

 

 

filter size์— ๋งž์ถฐ์„œ product๋ฅผ ํ•ฉ๋‹ˆ๋‹ค.

 

์ด๊ฒƒ์€ 2D grid์ด๊ธฐ ๋•Œ๋ฌธ์— ๊ฐ€๋Šฅํ•œ ๊ฒƒ์ด์ฃ .

 

 

์ฆ‰, ๋น„์Šทํ•œ ์ •๋ณด์— ๋Œ€ํ•ด์„œ filter๋ฅผ ์ ์šฉํ•˜์—ฌ ํ•˜๋‚˜์˜ Summary ๊ฐ’์„ ์ถ”์ถœํ•ด๋‚ด๋Š” ์ž‘์—…์ž…๋‹ˆ๋‹ค.

 

์œ„์™€ ๊ฐ™์ด ํ•œ ์นธ์”ฉ ์ด๋™ํ•ฉ๋‹ˆ๋‹ค.

 

์ด๊ฒƒ๋“ค๋„ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ 2D grid topology๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” data์˜ ์ผ๋ถ€๋ถ„์„ ๋ฝ‘์•„์˜จ ๊ฒƒ์ด์ฃ .

 

์ด๋ ‡๊ฒŒ, filter๋ฅผ ์˜ฎ๊ฒจ ๊ฐ€๋ฉด์„œ output์„ ํ•˜๋‚˜ํ•˜๋‚˜์”ฉ ๊ณ„์‚ฐํ•œ๋‹ค๊ณ  ๋ณด์‹œ๋ฉด ๋ฉ๋‹ˆ๋‹ค.

 

 

์ด ๊ฒฝ์šฐ, ์šฐ๋ฆฌ๊ฐ€ ํ•œ ์นธ์”ฉ ์œ„์•„๋ž˜๋กœ ์›€์ง์˜€์Šต๋‹ˆ๋‹ค.

 

์ด๊ฒƒ์„ stride๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

 

์ •๋ฆฌํ•˜๋ฉด,

 

์œ„์™€ ๊ฐ™์ด input data๊ฐ€ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์ •๋ณด๋ฅผ, filter๋ฅผ ์ง€๋‚˜์„œ summaryํ•˜์—ฌ output์˜ ๊ฒฐ๊ณผ๋กœ ๋‚˜์˜ค๊ฒŒ ๋˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

 

์ฆ‰, ๊ณต๊ฐ„์ ์ธ ํŠน์„ฑ์„ ์š”์•ฝํ•ด ๋‚˜๊ฐ€๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

 

 

์ด๊ฒŒ ๋‹ค์ž…๋‹ˆ๋‹ค.

 

element-wise product๋ฅผ ํ•˜์—ฌ summaryํ•ด ๋‚˜๊ฐ„๋‹ค.

 

 

 

์ด ์‚ฌ์ง„๊ณผ ๊ฐ™์ด element-wise product๊ฐ€ ์ด๋ฃจ์–ด์ง€๋Š” ๊ฒƒ์„ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

 

element ๋ณ„๋กœ ์—ฐ์‚ฐ์ด ์ด๋ฃจ์–ด์ง€๋Š” ๊ฒƒ์ด ๋ณด์ž…๋‹ˆ๋‹ค.

 

 

 

 

๊ณ„์‚ฐํ•œ ๊ฒฐ๊ณผ๊ฐ’์ด ํ•˜๋‚˜์˜ scalar ๊ฐ’์œผ๋กœ ๋“ค์–ด๊ฐ€๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.

 

 

 

 

 

 

 

 

 

 

 

๊ทธ๊ฒƒ์— ๋Œ€ํ•œ ๊ฒฐ๊ณผ๋กœ output์ด ๋‚˜์˜ค๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.

 

์ด๊ฒƒ์„ weighted average, ์ฆ‰ summary๋ฅผ ํ•œ๋‹ค๊ณ  ๋ณด์‹œ๋ฉด ๋ฉ๋‹ˆ๋‹ค.

 

weighted summation๊ณผ weighted average๋Š” ๊ฐ™์€ ์˜๋ฏธ๋กœ ๋ณด์‹œ๋ฉด ๋˜๊ฒ ์Šต๋‹ˆ๋‹ค.

 

 

๊ทธ๋ ‡๋‹ค๋ฉด, ์ด๊ฒŒ ์™œ Neural Network์ธ์ง€ ์˜์‹ฌ์ด ์ƒ๊ธฐ์‹ค ํ…๋ฐ์š”.

 

์ด์ œ CNN๊ณผ MLP๋ฅผ ๋น„๊ตํ•ด๋ณด๋ฉฐ ์ด๊ฒŒ ์™œ Neural Network์˜ specialํ•œ form์ธ์ง€ ์‚ดํŽด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

 

 

 

 

 

 

 

 

์ด ํ˜•ํƒœ๋ฅผ ๋‹ค์‹œ ๋ด…์‹œ๋‹ค.

 

์œ„์—์„œ ๋ณธ kernel์ด ์šฐ๋ฆฌ๊ฐ€ MLP์—์„œ ์•Œ๊ณ ์žˆ๋Š” weight ์—ญํ• ์„ ํ•œ๋‹ค๊ณ  ๋ณด์‹œ๋ฉด ๋ฉ๋‹ˆ๋‹ค.

 

๊ทธ๋ฆฌ๊ณ  input์€ ์šฐ๋ฆฌ๊ฐ€ ์•„๋Š” input์ด๊ณ , output์€ ์ผ๋‹จ ์ง€๊ธˆ์€ hidden์ด๋ผ๊ณ  ๋ณด๊ณ  ์•„๋ž˜ ๋‚ด์šฉ์„ ์‚ดํŽด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

 

 

์œ„์™€ ๊ฐ™์ด 4 x 4 ์˜ ๊ฐ๊ฐ์˜ pixel ๋“ค์ด ์œ„์™€ ๊ฐ™์ด ํŽผ์ณ์ ธ ์žˆ๋‹ค๊ณ  ํ•ฉ์‹œ๋‹ค.

 

์šฐ๋ฆฌ๊ฐ€ ์ง€๊ธˆ๊นŒ์ง€ ๋ด์˜จ input์€ ์œ„์™€ ๊ฐ™์ด vector ํ˜•ํƒœ๋กœ ํŽผ์ณ์ ธ ์žˆ์Šต๋‹ˆ๋‹ค.

 

์ด๊ฒƒ์„ flatten์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

 

flat vector๋ผ๊ณ ๋„ ํ•ฉ๋‹ˆ๋‹ค.

 

 

๊ทธ๋ž˜์„œ ์ด๊ฒƒ๊ณผ 2D grid input๊ณผ ๋‹ค๋ฅธ ๊ฒƒ์ผ๊นŒ์š”?

 

ํ•œ ์ค„๋กœ ์ญ‰ ์ค„์„ธ์› ๋‹ค๊ณ  ์ƒ๊ฐํ•˜๋ฉด ์–ด๋–ค๊ฐ€์š”?

 

๊ฐ™์€ ๊ฒƒ์ž…๋‹ˆ๋‹ค !

 

 

์œ„์™€ ๊ฐ™์ด ์œ„์น˜ ์ •๋ณด๋ฅผ ๊ฐ€์ง€๊ณ  gradient๋ฅผ ๋ฌถ์œผ๋ฉด, ์œ„ 4 x 4์˜ 2D grid input pixel image๊ฐ€ ๋˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

 

 

์œ„์™€ ๊ฐ™์ด labeling์„ ํ–ˆ๋‹ค๊ณ  ๋ด…์‹œ๋‹ค.

 

๊ทธ๋ ‡๋‹ค๋ฉด, ์•„๋ž˜์™€ ๊ฐ™์ด kernel์˜ ๊ฐ’๋„ ๋ถ™์–ด์„œ ๋ณผ ์ˆ˜ ์žˆ๊ฒ ์ฃ .

 

(์ผ๋ถ€ ์ƒ๋žตํ•˜์—ฌ y1 ~ y4๊นŒ์ง€๋งŒ ๊ทธ๋ ธ์Šต๋‹ˆ๋‹ค.)

 

 

๊ฒฐ๊ตญ,

 

 

์ด๋Ÿฌํ•œ ๊ณผ์ •์„ ๊ฑฐ์น˜๋Š” ๊ฒƒ์ด์ฃ .

 

๊ทธ๋ฆฌ๊ณ , stride๋ฅผ 2๋ผ๊ณ  ํ•˜๋ฉด, ์•„๋ž˜์™€ ๊ฐ™์ด y2๋„ ๊ตฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

 

 

์ด๋•Œ, y1์„ ๋งŒ๋“œ๋Š” kernel ๊ฐ’๊ณผ y2๋ฅผ ๋งŒ๋“œ๋Š” kernel ๊ฐ’์€ ๊ฐ™์€ kernel ๊ฐ’์ž…๋‹ˆ๋‹ค.

 

 

์ด๋ ‡๊ฒŒ ํ•˜๋‚˜์˜ Kernel๋กœ input์„ ๋Œ๋ฉด์„œ hidden layer๋ฅผ ํ•˜๋‚˜ ๋งŒ๋“  ๊ฒƒ๊ณผ ๊ฐ™์€ ๊ฒƒ์ž…๋‹ˆ๋‹ค.

 

 

์ด๋ ‡๊ฒŒ ๋ณด๋ฉด ์‚ฌ์‹ค MLP์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

 

๊ทธ์ € ํ‘œํ˜„๋งŒ 2D grid์— ๋งž์ถฐ์„œ ํ•ด์ค€ ๊ฒƒ์ด ๋ฉ๋‹ˆ๋‹ค.

 

์‹ค์ œ๋กœ vector ์—ฐ์‚ฐ์œผ๋กœ ๋ณด์‹œ๋ฉด ๋˜๋Š”๋ฐ, ์šฐ๋ฆฌ๊ฐ€ 2D grid ํ˜•ํƒœ๋กœ ๋ณด๋‹ˆ๊นŒ element-wise ํ˜•ํƒœ๋กœ ๋ณธ ๊ฒƒ์ž…๋‹ˆ๋‹ค.

 

 

๊ทธ๋Ÿผ MLP์™€ ๋น„์Šทํ•œ ๋ถ€๋ถ„๋“ค์„ ๋” ์‚ดํŽด๋ด…์‹œ๋‹ค.

 

 

 

Sparse connection

 

MLP์˜ matrix multiplication ๋ฐฉ์‹์€ ์œ„ x 1 ~ 16์„ ๋‹ค ์จ์„œ ๊ฐ๊ฐ์˜ y1 ~ 4๋ฅผ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด์—ˆ์ฃ .

 

 

๊ทธ๋Ÿฐ๋ฐ,

 

์œ„ CNN์˜ hidden node y1์„ ๋ณด์•˜์„ ๋•Œ,

 

x1, x2, x5, x6์˜ ์—ฐ๊ฒฐ๋กœ 4๊ฐœ๋งŒ ์—ฐ๊ฒฐํ•ฉ๋‹ˆ๋‹ค.

 

์ฆ‰, 12๊ฐœ์˜ ์—ฐ๊ฒฐ์€ ๋Š์–ด๋ฒ„๋ฆฌ๊ณ  4๊ฐœ๋งŒ ์—ฐ๊ฒฐํ•˜์—ฌ kernel size์— ๋งž์ถฐ์„œ ํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

 

์ถœ์ฒ˜ : https://towardsdatascience.com/the-sparse-future-of-deep-learning-bce05e8e094a

๊ทธ๋ž˜์„œ ์ด๊ฒƒ์€ denseํ•˜๊ฒŒ, ๋ฐ€๋„ ์žˆ๊ฒŒ ์—ฐ๊ฒฐ๋˜์–ด ์žˆ์ง€ ์•Š๊ณ , ๋“ฌ์„ฑ๋“ฌ์„ฑํ•˜๊ฒŒ ์—ฐ๊ฒฐ์ด ๋˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

 

๊ทธ๋ž˜์„œ ์ด๊ฒƒ์„ Sparse connection์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

 

 

 

Parameter Sharing

์ถœ์ฒ˜ : https://pennlio.wordpress.com/2014/04/11/fully-connected-locally-connected-and-shared-weights-layer-in-neural-networks/

์šฐ๋ฆฌ๊ฐ€  MLP์—์„œ ์‚ดํŽด๋ณด์•˜์„ ๋•Œ, weight ๋“ค์ด ๋‹ค ๋‹ค๋ฅธ ๊ฐ’์„ ๊ฐ€์ง‘๋‹ˆ๋‹ค.

 

๊ทธ๋Ÿฐ๋ฐ, ์šฐ๋ฆฌ๊ฐ€ ์œ„ ์˜ˆ์‹œ์—์„œ ๋ณธ CNN์€ kernel์„ ์ด๋™์‹œํ‚ค๋ฉฐ, ๋˜‘๊ฐ™์€ weight๋ฅผ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค.

 

MLP์˜ ๊ฒฝ์šฐ์—๋Š” 16 x 4๋กœ 64๊ฐœ์˜ weight๋ฅผ ๊ฐ€์ ธ์•ผํ•˜๊ณ , sparse connection์„ ๊ณ ๋ คํ•˜๋ฉด 4 x 4๋กœ 16๊ฐœ๋ฅผ ๊ฐ€์ ธ์•ผํ•˜์ง€๋งŒ,

 

์—ฌ๊ธฐ์— parameter sharing์œผ๋กœ 4๊ฐœ์˜ weight๋งŒ์œผ๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

 

 

 

๊ทธ๋ ‡๋‹ค๋ฉด CNN์ด๋ผ๋Š” network๋Š” sparse connection๊ณผ parameter sharing์ด ๋“ค์–ด MLP๋ผ๊ณ  ๋ณด๋Š” ๊ฒƒ๋„ ๊ดœ์ฐฎ์„๊นŒ์š”?

 

๊ทธ๋ ‡๊ฒŒ ๋ด๋„ ๋ฌด๋ฐฉํ•ฉ๋‹ˆ๋‹ค !

 

 

๊ทธ์ € sparse connection๊ณผ parameter sharing์ด ์™œ ๋“ค์–ด๊ฐ€๋ƒ?

 

2D grid , 2D topology๋ฅผ ๊ฐ€์ง€๋Š” Data ์—์„œ localize summarization์„ ํ•ด๋‚˜๊ฐ€๊ฒŒ ๋””์ž์ธ์ด ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

 

๊ทธ๋ฆฌ๊ณ  ์ด๊ฒƒ์€ ๋„“๊ฒŒ ๋ณด๋ฉด regularization์˜ ๊ฐœ๋…์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

 

 

์ด sparse connection์„ randomํ•˜๊ฒŒ ํ•œ๋‹ค๋ฉด drop out์˜ ํŠน์ง•์ด๋ผ๊ณ  ๋ณผ ์ˆ˜ ์žˆ๊ฒ ์œผ๋‚˜.

 

CNN์—์„œ๋Š” ์ •ํ•ด์ง„ ๊ทœ์น™์— ์˜ํ•ด์„œ ์ง„ํ–‰๋˜๊ธฐ ๋•Œ๋ฌธ์— ๊ทธ๋ ‡๊ฒŒ๋Š” ๋ณด๊ธฐ ์–ด๋ ต์Šต๋‹ˆ๋‹ค.

 

 

์œ„ ๊ณผ์ •์œผ๋กœ ๋ณด๋ฉด MLP ์ž…์žฅ์—์„œ ๊ต‰์žฅํžˆ ๊ฐ•ํ•œ ์ œ์•ฝ์„ ์ค€๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

 

๊ทธ๋ ‡๋‹ค๋ฉด, ์„ฑ๋Šฅ ํ–ฅ์ƒ์— ์žˆ์–ด, ๊ทธ์ € ์šฐ๋ฆฌ๊ฐ€ ๋ฐฐ์šด๋Œ€๋กœ backpropagation์„ ํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค.

 

์ด CNN์€ ๊ตฌ์กฐ์ ์ธ regularization์•„ ๊ฑธ๋ฆฐ MLP์™€ ๋‹ค๋ฆ„ ์—†์œผ๋‹ˆ๊นŒ ๋ง์ด์ฃ .

 

 

Convolutional operation for Multi-channel inputs

 

์ž, ์ด๋ฒˆ์—” ๋˜‘๊ฐ™์€ CNN ๊ตฌ์กฐ์—์„œ multi-channel์˜ ๊ฐœ๋…์—์„œ ํ™•์žฅ์‹œ์ผœ ์‚ดํŽด๋ณด๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

 

 

 

์šฐ๋ฆฌ๊ฐ€ ๋‹ค๋ฃจ๋Š” ์‹ค์ œ Image์ธ input์€ R,G,B๋กœ ์ด๋ฃจ์–ด์ง„ ํ•˜๋‚˜์˜ input์œผ๋กœ 3๊ฐœ์˜ channel๋กœ ์ƒ๊ธฐ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.

 

๊ทธ๋ฆฌ๊ณ , width, height๋Š” ์šฐ๋ฆฌ๊ฐ€ ์•„๋Š” image์˜ 2D grid  ๊ฐ’์ด๋ผ๊ณ  ๋ณด์‹œ๋ฉด ๋ฉ๋‹ˆ๋‹ค.

 

๊ทธ๋ฆฌ๊ณ  depth๋Š” ๋ช‡ channel์ด๋ƒ๋ฅผ ์˜๋ฏธํ•˜์ฃ .

 

๊ทธ๋Ÿฌ๋‹ˆ ์ด 3์žฅ์ด image์˜ input observation์ธ ๊ฒƒ์ž…๋‹ˆ๋‹ค.

 

 

์šฐ๋ฆฌ๋Š” ์ด matrix๊ฐ€ channel ์ˆ˜๋งŒํผ ์žˆ์œผ๋ฏ€๋กœ,

 

์šฐ๋ฆฌ๋Š” ์ด๊ฒƒ์„ tensor data๋ผ๊ณ  ๋ถ€๋ฅผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.

 

 

32 x 32 x 3์˜ ํฌ๊ธฐ๋ฅผ ๊ฐ–์ฃ .

 

์ด ํ•˜๋‚˜์˜ tensor๊ฐ€ ํ•˜๋‚˜์˜ Data point์ž…๋‹ˆ๋‹ค. ํ•˜๋‚˜์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋‹จ์œ„์ด์ฃ .

 

์ž, ์ด์ƒํƒœ์—์„œ convolutional operation์€ ์–ด๋–ป๊ฒŒ ์ง„ํ–‰๋ ๊นŒ์š”?

 

 

 

 

 

 

์œ„ ๊ทธ๋ฆผ๊ณผ ๊ฐ™์ด 3๊ฐœ์˜ kernel๋“ค์ด ์กฐํ•ฉ๋˜์–ด ํ•˜๋‚˜์˜ scalar ๊ฐ’์„ ๊ฐ€์ง‘๋‹ˆ๋‹ค.

 

์ด RGB 3 channel์˜ ์ •๋ณด๋ฅผ ์กฐํ•ฉํ•ด์•ผ ์šฐ๋ฆฌ๊ฐ€ image์—์„œ ๊ทธ ๋ถ€๋ถ„์— ๋Œ€ํ•ด ์›ํ•˜๋Š” ์ •๋ณด๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

 

๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๊ฐ€ 3๊ฐ€์ง€์˜ channel์„ ์กฐํ•ฉํ•ด์„œ ํ•˜๋‚˜์˜ ์š”์•ฝ์œผ๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

 

 

 

๊ทธ๋Ÿฐ๋ฐ, ์ง€๊ธˆ input์ด tensor์ธ ๊ฒƒ์ฒ˜๋Ÿผ,

 

kernel๋„ ํ•˜๋‚˜์˜ tensor ํ˜•ํƒœ๋ฅผ ๋„๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

 

kernel์€ 2 x 2 x 3์ด์ฃ .

 

 

์ด ๊ทธ๋ฆผ๊ณผ ๊ฐ™์ด 12๊ฐœ๊ฐ€ ๋ชจ์—ฌ์„œ ํ•˜๋‚˜์˜ tensor๋ฅผ ์ด๋ฃจ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

 

์ด๊ฒƒ์€ kernel1, 2, 3์ด ์•„๋‹™๋‹ˆ๋‹ค.

 

ํ•˜๋‚˜์˜ tensor์ด์ฃ .

 

 

 

input๋„ 3 channel์ด๋‹ˆ kernel๋„ ๊ฑฐ๊ธฐ์— ๋งž์ถฐ์„œ 3 channel ์งœ๋ฆฌ๊ฐ€ ์žˆ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

 

๊ทธ๋ฆฌ๊ณ  ์ด kernel์€ ๊ฐ 2 x 2์˜ ๊ฐ’๋“ค์€ ๊ฐ๊ฐ ๋‹ค๋ฅธ ๊ฐ’์„ ๊ฐ–๊ฒ ์ฃ .

 

 

ํ•˜๋‚˜์˜ kernel์€ ๋‹จ์ผ channel์—์„œ convolutional operation๊ณผ ๊ฐ™์€ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.

 

ํ•˜๋‚˜์˜ kernel์ด ํ•˜๋‚˜์˜ scalar์˜ ๊ฐ’์„ ์–ป๊ธฐ ์œ„ํ•ด์„œ ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

 

 



์ด๊ฒƒ๋„ ๋˜‘๊ฐ™์ด ์ด๋™ํ•˜๋ฉฐ scalar ๊ฐ’์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.

 

 

 

๊ทธ๋ฆฌ๊ณ  ๋งˆ์ง€๋ง‰์—” ์œ„์™€ ๊ฐ™์ด ๋˜๊ฒ ์ฃ .

 

์ด ๊ทธ๋ฆผ์—๋Š” 5 x 5 x 3 ์˜ Kernel์„ ๊ฐ€์ง€๊ณ  ์ˆ˜ํ–‰ํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.

 

 

๊ทธ๋ž˜์„œ, ์ด๋ ‡๊ฒŒ ๋งŒ๋“ค์–ด์ง„ ์ด ํ•œ ์žฅ์˜ output node๋“ค์˜ ์กฐํ•ฉ์„,

 

Convolutional Map ๋˜๋Š” Feature Map์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

 

์ด map์— ๊ทธ ์ด์ „ ๋‹จ๊ณ„์˜ ์ง€์—ญ์ ์ธ ์ •๋ณด๋“ค์„ ์กฐํ•ฉํ•ด์„œ ํ•˜๋‚˜์˜ ํŠน์ง• ๋งต์„ ๋งŒ๋“ค์–ด๋‚ธ ๊ฒƒ์ž…๋‹ˆ๋‹ค.

 

 

 

feature map์„ ํ•˜๋‚˜๋งŒ ์“ด๋‹ค๋ฉด ๋ฝ‘์•„๋‚ผ ์ˆ˜ ์žˆ๋Š” ์ •๋ณด๊ฐ€ ๊ต‰์žฅํžˆ ์ œํ•œ์ ์ด๋ฏ€๋กœ, feature map์„ ์—ฌ๋Ÿฌ ๊ฐœ๋ฅผ ์”๋‹ˆ๋‹ค.

 

 

์—ฌ๊ธฐ ๋“ฑ์žฅํ•˜๋Š” kernel์€ ์ด์ „ feature map 1์—์„œ์˜ kernel๊ณผ ๋‹น์—ฐํžˆ ๋‹ค๋ฅธ ๊ฐ’์ด๊ฒ ์ฃ ?

 

๊ทธ๋ž˜์„œ, ๊ฐ feature map ๋งˆ๋‹ค summarization์˜ ๋ฐฉํ–ฅ๋„ ๋‹ค๋ฆ…๋‹ˆ๋‹ค.

 

์ด๋ฅผ ํ…Œ๋ฉด, feature map #1์€ edge๋ฅผ ์ฐพ๋Š”๋‹ค๊ณ  ํ•˜๋ฉด,

 

feature map #2๋Š” edge๊ฐ€ ์•„๋‹Œ ๋ฉด์„ ์ฐพ๋Š”๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

 

 

๊ฐ๊ฐ์˜ feature map์ด ์ด์ „ ๋‹จ๊ณ„์˜ data๋กœ๋ถ€ํ„ฐ ์„œ๋กœ ๋‹ค๋ฅธ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•ด๋‚ด๊ธฐ๋ฅผ ๊ธฐ๋Œ€ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

 

 

 

 

์ด๋Ÿฐ์‹์œผ๋กœ feature map์„ ์—ฌ๋Ÿฌ ๊ฐœ๋ฅผ ๋งŒ๋“ญ๋‹ˆ๋‹ค.

 



 

 

์œ„ ์‚ฌ์ง„๊ณผ ๊ฐ™์ด ์ด Convolutional layer์—์„œ๋Š” 32 x 32์˜ feature map์„ 12๊ฐœ ๋งŒ๋“  ๊ฒƒ์ž…๋‹ˆ๋‹ค.

 

์ด 12๊ฐœ์˜ ์„œ๋กœ ๋‹ค๋ฅธ ๊ด€์ ์—์„œ feature๋ฅผ ์ถ”์ถœํ–ˆ๋‹ค๊ณ  ๋ณด๋ฉด ๋˜๊ฒ ์Šต๋‹ˆ๋‹ค.

 

๊ทธ๋Ÿฌ๋ฏ€๋กœ, kernel๋„ 12๊ฐœ์˜ tensor ํ˜•ํƒœ์ผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.

 

 

Stanford CS Class (Con NN for Visual Recognition)

 

 

์œ„ ๋‚ด์šฉ์„ ๊ต‰์žฅํžˆ ์ž˜ ํ‘œํ˜„ํ•œ ๊ทธ๋ฆผ์ž…๋‹ˆ๋‹ค.

 

3๊ฐœ์˜ channel์„ ์กฐํ•ฉํ•˜์—ฌ filter์—ฐ์‚ฐ๊ณผ bias๊นŒ์ง€ ๋”ํ•ด์ฃผ๋ฉด,

 

ํ•˜๋‚˜์˜ scalar ๊ฐ’์ด ๋‚˜์˜ค๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.

 



 

์ด๊ฒƒ์„ ์ด๋™ํ•˜์—ฌ ์—ฐ์‚ฐํ•ฉ๋‹ˆ๋‹ค.

 

์œ„ ๋‘ ์‚ฌ์ง„์€ ๊ฐ๊ฐ filter1, filter2๋กœ ์—ฐ์‚ฐ๋˜์–ด feature map1, feature map2๊ฐ€ ๋‚˜์˜จ ๊ทธ๋ฆผ์ž…๋‹ˆ๋‹ค.

 

 

๋‹ค์‹œ ๋ฐ˜๋ณตํ•˜์ž๋ฉด , kernel์˜ ์ˆ˜๋Š” Input์ด๋“  hidden์ด๋“  feature map์ด ์—ฌ๋Ÿฌ ๊ฐœ๋ผ๊ณ  ํ•˜๋”๋ผ๋„,

 

๊ฐ ์ง€์—ญ ์ •๋ณด๋ฅผ ์ข…ํ•ฉํ•ด์„œ ํ•˜๋‚˜์˜ ๊ฐ’์œผ๋กœ ํ‘œํ˜„ํ•˜๊ณ  ์‹ถ๋‹ค๋ผ๊ณ  ํ•œ๋‹ค๋ฉด, element-wise ์—ฐ์‚ฐ์— ์žˆ์–ด ์–ด์ฉ” ์ˆ˜ ์—†์ด kernel๋„ input channel ์ˆ˜์— ๋งž๊ฒŒ ํ•ด์ค€ ๊ฒƒ์ž…๋‹ˆ๋‹ค.

 

 

 

์œ„ ๋‚ด์šฉ์„ ์šฐ๋ฆฌ๊ฐ€ 2D grid์—์„œ ์‚ดํŽด๋ณธ ๊ฒƒ์ฒ˜๋Ÿผ 3D ๋กœ Reshape ํ•ด๋ด…์‹œ๋‹ค.

 

 

 

์ž ์ด ๊ทธ๋ฆผ์„ ํ†ตํ•ด ์ดํ•ดํ•ด๋ด…์‹œ๋‹ค.

 

์—ฌ์ „ํžˆ ์ด ์•ˆ์—๋Š” sparse connection, parameter sharing์ด ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.

 

๊ทธ ๊ฐœ๋…์ด ๋” ํ™•์žฅ ๋˜์—ˆ๋‹ค๊ณ  ๋ณด์‹œ๋ฉด ๋  ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.

 

 

 

์ž, ์šฐ๋ฆฌ๊ฐ€ ์•ž์—์„œ

 

MLP๋ฅผ ๊ธฐ์ค€์œผ๋กœ CNN์˜ 1 channel ๋ฅผ ๋ดค์Šต๋‹ˆ๋‹ค.

 

์ด๊ฒƒ์€ vector๋ฅผ ๋˜‘๊ฐ™์€ matrix๋กœ ํ‘œํ˜„ํ•œ ๊ฒƒ์ด์ฃ .

 

index๋ฅผ ์–ด๋–ป๊ฒŒ ๋ฌถ์–ด์„œ ์ง€์—ญ์  index๋ผ๋ฆฌ ๋ฌถ์–ด์„œ connection์„ ๋งŒ๋“ค์–ด์ฃผ๋ƒ๋Š” ์ฐจ์ด๊ฐ€ ์žˆ์ฃ .

 

CNN์—์„œ๋Š” MLP์™€ ๋‹ค๋ฅด๊ฒŒ index๋ฅผ ๊ณ ๋ คํ•ด์ฃผ์–ด์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

 

์—ฌ๊ธฐ์„œ index๋Š” ์ง€์—ญ์ ์ธ ํŠน์„ฑ์„ ๊ฐ€์ง€๋Š” ์œ„ ์˜ˆ์‹œ์—์„œ x1, x2, x7, x8๋กœ ๋ฌถ์ธ๋‹ค๋Š” ํŠน์„ฑ์ž…๋‹ˆ๋‹ค.

 

 

 

๊ทธ๋ฆฌ๊ณ , CNN multi-channel์—์„œ๋Š” tensor ํ˜•ํƒœ๋กœ ๋ด…๋‹ˆ๋‹ค.

 

์ด ๋˜ํ•œ vector๋กœ ํ˜ธํ™˜์ด ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.

 

 

์ฆ‰ MLP๊ฐ€ ์ข€ ๋ฒ”์šฉ์ ์ธ ๊ฐœ๋…์ด๋ผ๋ฉด,

 

CNN์€ image์— ๋Œ€ํ•ด์„œ ๋ช‡ ๊ฐ€์ง€ ์ถ”๊ฐ€๋˜์–ด ํ•ด๋†“์€ ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ•˜๋ฉด ๋˜๊ฒ ์Šต๋‹ˆ๋‹ค.

 

 

 

์šฐ๋ฆฌ๋Š” ๊ทธ๋ž˜์„œ Conolutional Operation์˜ ๊ฐœ๋…, ์™œ ํ•˜๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  multi-channel๋กœ ํ™•์žฅ ๋˜์—ˆ์„ ๋•Œ ์–ด๋–ป๊ฒŒ ๋˜๋Š”์ง€,

 

๊ทธ๋ฆฌ๊ณ  MLP์™€ ์–ด๋– ํ•œ ๊ด€๋ จ์ด ์žˆ๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  sparse connection๊ณผ parameter sharing ์ด๋Ÿฐ ๊ฐ•ํ•œ regularization์— ์˜ํ•ด์„œ

 

image์— ๋งž๊ฒŒ MLP์˜ ๋ชจ์–‘์„ ๋ณ€ํ˜•ํ•œ ๊ฒŒ CNN์ด๊ตฌ๋‚˜ ๋ผ๋Š” ๊ฒƒ์„ ์•Œ์•„์ฃผ์‹œ๋ฉด ๋˜๊ฒ ์Šต๋‹ˆ๋‹ค.

'Artificial Intelligence > Deep Learning' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

[Deep Learning] Recurrent Neural Network (1)  (1) 2023.05.16
[Deep Learning] Convolutional Neural Network (2)  (0) 2023.05.03
[Deep Learning] Deep Neural Network (4)  (0) 2023.04.19
[Deep Learning] Deep Neural Network (3)  (0) 2023.04.16
[Deep Learning] Deep Neural Network (2)  (0) 2023.04.14

BELATED ARTICLES

more